Exercise 33

Prove the statements in Exercises 32 to 34.
If PQR is a triangle in space and $b>0$ is a number, then there is a triangle with sides parallel to those of PQR and side lengths b times those of PQR .

Solution

Suppose there's a triangle with known sides and angles.

The law of cosines gives three equations relating the sides with the angles.

$$
\begin{align*}
& A^{2}=B^{2}+C^{2}-2 B C \cos \alpha \tag{1}\\
& B^{2}=A^{2}+C^{2}-2 A C \cos \beta \tag{2}\\
& C^{2}=A^{2}+B^{2}-2 A B \cos \gamma \tag{3}
\end{align*}
$$

If the lengths are all multiplied by b, will these angles stay the same?

Use the law of cosines to find out.

$$
\begin{aligned}
(b A)^{2} & =(b B)^{2}+(b C)^{2}-2(b B)(b C) \cos \zeta \\
(b B)^{2} & =(b A)^{2}+(b C)^{2}-2(b A)(b C) \cos \xi \\
(b C)^{2} & =(b A)^{2}+(b B)^{2}-2(b A)(b B) \cos \eta \\
b^{2} A^{2} & =b^{2} B^{2}+b^{2} C^{2}-2 b^{2} B C \cos \zeta \\
b^{2} B^{2} & =b^{2} A^{2}+b^{2} C^{2}-2 b^{2} A C \cos \xi \\
b^{2} C^{2} & =b^{2} A^{2}+b^{2} B^{2}-2 b^{2} A B \cos \eta
\end{aligned}
$$

Divide both sides of each equation by b^{2}.

$$
\begin{aligned}
& A^{2}=B^{2}+C^{2}-2 B C \cos \zeta \\
& B^{2}=A^{2}+C^{2}-2 A C \cos \xi \\
& C^{2}=A^{2}+B^{2}-2 A B \cos \eta
\end{aligned}
$$

Comparing these to equations (1), (2), and (3) results in

$$
\begin{aligned}
\cos \alpha & =\cos \zeta \\
\cos \beta & =\cos \xi \\
\cos \gamma & =\cos \eta
\end{aligned}
$$

Since all angles are between 0 and $2 \pi, \alpha=\zeta, \beta=\xi$, and $\gamma=\eta$. This means that multiplying a triangle's sides by b results in a new triangle whose sides are parallel with those of the original.

